0 引言
近年来,随着全球对节能减排的呼声越来越高,传统水泥生产由于消耗大量资源和能源,以及产生大量的温室气体而面临巨大挑战。资料显示,水泥工业能源消耗占全球一次能源消费的2%左右,或占全球工业能耗近5%;其CO2排放量占全球CO2排放总量的5%[1]。而对占全球产量近60%的我国水泥行业而言,水泥工业的节能减排显得尤为迫切。
水泥生产过程中CO2排放源主要有:1)原料中碳酸盐分解;2)燃料的燃烧;3)各工艺设备的电力消耗。通用硅酸盐水泥生产中排放的CO2约有60%来自于碳酸盐分解,约有40%来自于燃料燃烧和电耗。通用硅酸盐水泥熟料中C3S矿物含量一般在60%左右,而由于C3S烧成温度较高,且配料中碳酸钙比例较大,因此生产时能耗较高,CO2及NOx的排放量也较大。因此,要实现水泥的低碳生产,可采用以下两种技术途径:一是降低能源消耗产生的CO2量,即在通用硅酸盐水泥体系及其矿物组成范围内,通过调控原材料的易烧性和易磨性,改进生产工艺及装备水平,降低水泥生产过程的能源消耗;二是降低碳酸盐分解产生的CO2量,即突破现有硅酸盐水泥熟料矿物体系及其矿物组成范围的限制,降低高钙矿物含量而提高低钙矿物含量或引入其他低钙矿物组分,研究开发新的低碳水泥体系。目前,水泥行业在第一种途径上已取得了良好进展,系列节能减排技术得到大规模普及利用,在现有技术条件下,依靠工艺技术及装备水平改造进一步实现节能减排难度已很大,而低碳水泥品种的研发成为当今水泥材料科学领域的热点。
目前,国际上低碳水泥品种很多,有Porsol水泥、Alinit水泥、Celitement水泥、日本生态水泥、多组分高混合材掺量水泥、高贝利特水泥、Aether水泥、BCT水泥等,本文只对水泥生产工艺变化不大,可用目前新型干法水泥窑直接生产的高贝利特水泥、Aether水泥和BCT水泥进行了总结。
1 高贝利特水泥
水泥熟料中C3S矿物的生成焓为1810kJ/kg,而C2S矿物的生成焓仅为1350kJ/kg[2],所以增加熟料中C2S的含量并减少C3S的含量是降低熟料煅烧能耗的有效途径。因此,以C2S为主导矿物的低钙高贝利特水泥成为国际水泥工业最活跃的研究热点之一。
以贝利特为主导矿物的低热硅酸盐水泥体系(C2S-C3S-C3A-C4AF,即高贝利特水泥,High Belite Cement)的研究源于20世纪30年代的美国。其于1932~1935年建造高99m的莫利斯(Morris)坝期间第一次研制了低热水泥,即限制水泥熟料中C3A和C3S的含量以降低水化热,这即是高贝利特水泥的原型。此外,德国、日本和瑞典等国家也都开展过相关的研究。至20世纪90年代,中国在高贝利特水泥的研究和实践应用方面卓有成效,在国内外首次实现以C2S为主导矿物的高性能低热硅酸盐水泥的工业化生产。
高贝利特水泥和通用硅酸盐水泥在矿物组成上主要的差别在于C3S和C2S两种硅酸盐矿物含量的基本对调。高贝利特水泥以CaO含量相对较低的C2S为主(C2S含量一般为45%以上),从而使整个体系的CaO含量降低,其矿物组成为:C2S:40%~70%,C3S:10%~40%,C3A:2%~8%,C4AF:10%~25%[3]。其矿物种类与通用硅酸盐水泥相同,因此,其水化过程和水化产物也基本相同。
高贝利特水泥使用的原料与传统硅酸盐水泥基本相同,需加入石膏、重晶石、黄铁矿、铜尾矿和铅锌尾矿等外加剂以稳定高活性C2S晶型[3]。高贝利特水泥在制备工艺上具有低资源能源消耗、低环境负荷等特点。如其烧成温度仅为1 350℃,比传统硅酸盐水泥低约100℃,烧成过程中CO2和SO2等的排放量降低10%,在水泥性能上具有低热和高后期强度等特性,很好地满足了大体积混凝土尤其是水工混凝土的技术要求,并在举世瞩目的三峡大坝等重点工程进行了规模应用。但与传统水泥相比,高贝利特水泥存在早期强度低的缺点。为此,水泥科研工作者做了大量努力,通过物理活化和化学活化等多种技术途径,改善了高贝利特体系的早期水化活性[4-8]。
2 Aether水泥[9]
Aether水泥是由拉法基公司研制发明的,并已申报发明专利。拉法基水泥公司于2010年成立了Aether项目组,历时3年(从2010年9月1日至2013年8月31日)进行了Aether低碳水泥的相关研究工作。Aether项目组完成了Aether水泥生产的2次工业试验,证实了依托现有的水泥窑炉工业化规模生产Aether水泥的可行性。
Aether水泥可使用的原料包括:石灰石、铝土矿、石膏、铁质原料及泥灰岩。其引入硫铝酸钙(C4A3S)矿物,在较低的温度(1225~1300℃)下生产,相比波特兰水泥(1400~1500℃),可显著降低生产能耗,吨水泥可减少CO2排放量25%~30%。Aether水泥的矿物组成为:贝利特(C2S)40%~75%,硫铝酸钙(C4A3S)15%~35%,铁相(C2(A,F))5%~25%。Aether水泥相组成实例:C4A3S:35.5%,β-C2S:4.1%,α‘-C2S:44.0%,C12A7:0.7%,C2(A,F):12.4%,C2AS:0.9%,CaSO4:2.4%。
Aether水泥水化过程:
① C4A3S 水化:
C4A3S+2CS+38H→C3A·3CS·H32 +2AH3
② C2S 开始水化:C2S+AH3 +5H→C2ASH8
③ C2S水化、C2(A,F)开始水化:
C2S+C2(A,F)+10H →C2(A,F)SH8+2CH
C2S + C2(A,F)+5H→C3(A,F)SH4+CH
④ 中长期水化:
2C2S+C2(A,F)SH8 +(x-4)H→C3(A,F)SH4 +C3S2Hx
Aether水泥水化机理见图1。
图1 Aether水泥水化机理
专业机构BRE(英国建筑科学研究院-英国领先的建筑专业技术中心)对Aether水泥的测试结果表明:由Aether水泥制备的混凝土拥有较高的早期抗压强度,其6h抗压强度可达20MPa左右,28d抗压强度达到标准水泥(CEMⅠ52.5R)强度水平;该混凝土的尺寸收缩小于OPC配制混凝土的50%,尺寸稳定性高于OPC水泥制作的混凝土。
Aether水泥煅烧范围较窄(1225~1300℃),温度过低,矿物未完全反应,会产生C12A7和C2AS矿物,影响熟料质量;温度过高,C4A3S 矿物分解,SO2排放增加,易磨性变差。因此,需要严格控制煅烧温度,对工艺控制要求更高。
由拉法基公司相关报道可以看出,Aether水泥与贝利特-硫铝酸盐水泥(贝利特-硫铝酸盐水泥矿物组成为C2S:40%~70%,C4A3S:15%~30%,C4AF:0~10%)非常相近,应为同一水泥熟料矿物体系。
3 BCT水泥 [10-12]
BCT水泥是Belite-Calciumsulfoaluminate-Ternesite水泥的简称,由德国海德堡公司发明,并已申请发明专利。采用直径0.3m、长7.6m的试验窑炉进行了半工业规模的试验,生产了数吨不同成分的BCT熟料。试验证明,BCT水泥熟料整个生产过程(包括排放)都与普通水泥熟料生产相似,生产的BCT水泥砂浆试验证明其性能良好。下一步将扩大至工业规模和优化制造技术。
BCT水泥的核心技术是在熟料矿物体系中引入Ternesite即硫硅钙石矿物。硫硅钙石(C5S2S) 由2个C2S和1个CS 组成,一直被认为是惰性的,研究发现Ternesite是一种具有活性的熟料矿物,其水化反应介于铝酸盐和贝利特之间。与传统OPC水泥熟料煅烧过程中需要快速冷却以保留熟料的高反应活性不同的是,Ternesite形成温度在950~1 200℃之间,因此,BCT水泥熟料需要一个较慢的冷却过程或者说在烧成带后一个相对较长的停留时间。
BCT水泥生产需要的原材料与普通硅酸盐水泥相近,石灰石、泥灰岩、粉煤灰和工业副产石膏等工业废渣都是其原料来源。BCT水泥熟料中引入硫铝酸钙(C4A3S)和硫硅钙石(C5S2S),在较低的温度(1250~1300℃)下生产,CO2排放比传统OPC水泥熟料降低30%,预计将节约燃料和电力消耗10%~15%。BCT水泥熟料的矿物组成为:C5S2S :5%~75%,C2S:1%~80%,C4(AxF1-x)S :5%~70%,二次相(secondary phases):0~30%。(专利保护范围)最佳矿物组成为:C5S2S :20%~0%,C2S:20%~50%,C4(AxF1-x)S:20%~45%,二次相:10%~20%。
x取值范围为0.1~1,优选在0.8~0.95。
BCT水泥水化过程:
①当BCT水泥与水接触时,C4A3S快速与硫酸盐形成钙矾石。因此,第一个24h占主导地位的是C4A3S 与硬石膏反应形成钙矾石。
C4A3S+CS+H→C3A·3CS·H32+AH3
② 硬石膏一旦耗尽,剩余的铝酸盐相和铁相继续溶解并与Ternesite反应通过消化Al(OH)3形成更多的钙矾石和AFm。
C4A3S+C4AF+C5S2S+AH3→C2ASH+C3A·3CS·H32+C3A·CSH12
③ 最后贝利特反应形成C-S-H凝胶:
C2S+H→C-S-H+CH
最终的水化产物为C(A)SH凝胶、AFt、AFm、潜在的水榴石和羟钙石。
该品种水泥综合了硫铝酸钙的早期强度和贝利特水泥的耐久性,并通过Ternesite填补了迅速反应的铝酸盐和提供后期强度的贝利特的反应空白区间。基于Ternesite的水化特点,其除了可作为BCT水泥的一种矿物组分外,还可以作为一种添加剂用于硫铝酸盐基和硅酸盐基水泥胶凝材料系统中以改善性能。
4 结论
上述三类以低钙矿物C2S和C4A3S为主导矿物的熟料体系中,除硅酸盐体系的高贝利特水泥外,其他各类体系的水泥均引入一种以上的低能耗、低钙、高早强矿物,如C4A3S、C5S2S等。高贝利特含量和引入低钙早强矿物成为国际低碳水泥研究的趋势。
然而,从Aether水泥和BCT水泥体系的研究来看,C4A3S和C5S2S在1300℃会发生分解,因此,引入此矿物的水泥熟料体系烧成范围窄,对工艺过程控制水平提出了更高的要求;另外,在体系中过多地引入上述低钙早强矿物,也不利于实现水泥体系高性能化。在水泥性能方面,尽管这些体系的水泥具有较高的早期强度特征,但在施工性能及水泥耐久性方面都相应带来了不利影响,例如含C4A3S 体系的水泥,凝结过程则较难控制,因此在绝大部分情况下,也仅仅作为特种工程材料使用,限制其大范围推广应用。
笔者认为,如果能将目前中国建筑材料科学研究总院研究推广的能源管控系统应用于含低钙矿物的Aether水泥和BCT水泥的生产控制中,将可显著提高工艺控制水平,更好地实现低碳水泥的工业化生产。而对于水泥性能方面的影响,有研究表明硫铝酸钡钙C(4-x)BxA3S 的稳定性优于C4A3S,因此可通过掺杂等形式使C4A3S和C5S2S等低钙矿物更加稳定化以实现水泥性能优化。
参考文献:
[1] 史 伟,崔源声,武夷山。国外水泥工业低碳发展技术现状及前景展望[J].水泥,
[2] Kurdowski W, Duszak S, Trybalska B. Belite produced by means of low-temperature synthesis[J]. Cement and Concrete Research, 1997, 27(1): 51-62.
[3] 中国建筑材料科学研究院.一种高贝利特水泥熟料及其制备工艺:中国,98100581.0[P].1998-09-23.
[4] SUI Tongbo, GUO Suihua, LIU Kezhong, et al. Research on high belite cement[C]//4th Beijing International Symposium on Cement and Concrete. Beijing: China Academic Publishers, 1998:145-148.
[5] 方永浩,杨南如.异离子对β-C2S的稳定性及显微结构的影响[J]. 硅酸盐通报,1993(6):7-11.
[6] 隋同波,刘克忠,王 晶,等.高贝利特水泥的性能研究[J].硅酸盐学报,1999,27(4):488-492.
[7] 冯培植,李建锡.微量元素影响C2S水化活性的研究[J].武汉工业大学学报,1994,16(3):32-37.
[8] 卢伟杰,潘常玉,芦令超.高贝利特水泥活化技术的研究[J].新世纪水泥导报,2007(2):31-35.
[9] http://www.aether-cement.eu/.
[10] Wolfgang Dienemann, Dirk Schmitt, Frank Bullerjahn, et al. Belite-Calciumsulfoaluminate-Ternesite(BCT) - a new low carbon clinker technology[C]//VDZ Congress 2013(7th International VDZ Congress "Process Technology of Cement manufacturing").
[11] Heidelberg cement Ag. Method for producing ternesite-belite calcium sulfoaluminate clinker,WO 2013023731 A2.
[12] Heidelberg cement Ag. Calcium sulfoaluminate cement with ternesite,WO 2013023728 A2.